College of Engineering and Technology Mechanical Engineering Department Fluid Mechanics (ME 361)

Sheet 4

Losses in Pipes

1- Water flow in constant diameter pipe with the following conditions measured:
At section (a): $p_{\mathrm{a}}=223.39 \mathrm{KPa}$ and $z_{\mathrm{a}}=17.3 \mathrm{~m}$.
At section (b): $p_{\mathrm{b}}=204.774 \mathrm{KPa}$ and $z_{\mathrm{a}}=20.8 \mathrm{~m}$.
Is the flow from (a) to (b) or from (b) to (a)? Explain.

Figure 1

2- The pump shown in figure 2 adds 25 kW to the water and causes a flow rate of 0.04 $\mathrm{m}^{3} / \mathrm{s}$. Determine the flow rate expected if the pump is removed from the system. Assume $f=0.016$ for both cases and neglect minor losses.

Figure 2

3- Water flows from the basement to the second floor through the 20 mm -diameter copper pipe ($\varepsilon=0.0015 \mathrm{~mm}$) at a rate of $0.75 \mathrm{~L} / \mathrm{s}$ and exits through a faucet of diameter 13 mm . as shown in figure 3. Determine the pressure at point 1 . If C of elbow is 1.5 and C of valve is 10 .

Figure 3

